STABILIZATION OF NANO PARTICLES BY MACROMOLECULES
COMBINING PHOSPHORUS DENDRIMERS AND 15-MEMBERED
TRIOLEFINIC AZAMACROCYCLES

Grégory Franc, Elena Badetti, Marcial Moreno-Mañas, Jean-Pierre
Majoral, Rosa María Sebastián and Anne-Marie Caminade

a) Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
b) Department of Chemistry, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès, Barcelona, Spain
† Deceased on 20th February 2006.

Introduction
Combinations of dendrimers and macrocycles started to be developed fifteen years ago to confer benefits coming from both macromolecular components to this original and unique nanoarchitecture. Such a concept has been extensively studied with a macrocycle at the core (i.e. porphyrins, phthalocyanines, cyclam or crown ethers) but fewer reports deal with these macromolecules grafted at the periphery.

The aim of this work is to demonstrate the ability to combine phosphorus dendrimers and 15-membered azamacrocycles on the outer shell, phosphorus chemistry providing a fast and efficient tool to complete this kind of surface modification. These studies are carried out to demonstrate later on the interests to combine dendrimers functionalized with metalated macrocycles at the periphery in the field of catalysis.

Experimental
Material. All manipulations were carried out with standard high-vacuum and dry-argon techniques. The solvents were freshly dried and distilled (THF and ether over sodium/benzophenone, pentane and CH2Cl2 over phosphorus pentoxide).

Synthesis. Modification of the periphery was achieved by mixing the dendrimer and a slight excess of macrocycles (i.e. 6.6 eq instead of 6 eq for the first generation) in dried THF. All reactions were monitored by 31P NMR.

Results and Discussion
Some of us established the synthesis of 15-membered triolefinic macrocycles (Scheme 1). Through three different synthetic pathways tailoring of their aromatic substituents can be achieved.

In addition, these macrocycles have the ability to coordinate transition metals through the three endocyclic double bonds (such as Pd(0) or Pt(0)). They were then used as recoverable agents in different catalytic processes, like in the Mizoroki-Heck reaction.

Access to homogenous nanoparticles was also reported with these kinds of stabilizing agents.

\[
\begin{align*}
\text{Ar}_1 - \text{SO}_2 - \text{N} - \text{N} - \text{SO}_2 - \text{Ar}_2 \\
\text{M} = \text{Pd(0)} \text{ or Pt(0)}
\end{align*}
\]

After convenient functionalization of the aryl groups and through our classical divergent synthetic methodology, we have successfully grafted various free azamacrocycles at the periphery of phosphorus dendrimers based on a cyclophosphazene core. From the first to the fourth generation, 6 to 48 peripheral substituents have been added on the outer shell to form a new series of high-molecular weight dendritic type macromolecules.

However, while trying to obtain the metalated analogs of our new series in order to determine the advantages of such dendritic shape macromolecules in catalysis, this “dual” architecture has been revealed itself as an excellent stabilizing agent for homogenous Pd(0) and Pt(0) nanoparticles (Figure 1).

In addition, the synthesis is reproducible and the distributions of the new species are quite narrow.

Figure 1. Dendritic macromolecules as efficient stabilizing agents for the formation of homogeneous nanoparticles (n = 6, 12 or 48).

Conclusion
Thus, in this work, we propose to demonstrate that phosphorus dendrimers and 15-membered azamacrocycles are versatile reagents for the synthesis of dendritic macromolecules. In addition these large macromolecules exhibit excellent ability to stabilize nanoparticles with different metals. Determination of their catalytic activities for different C-C bond coupling reactions is currently underway.

Acknowledgements. G.F. is thankful to the European Community for a Ph. D. grant (Fonds Social Européen from 11/2004 to 10/2007). E.B. is thankful to Spanish Ministry of Education and Science for a Ph. D. grant and financial support (HF2004-0212). Dr A. Kakkar and Dr T. van de Ven are also gratefully acknowledged for financial support.

References